Snowflake
Snowflake is a fully managed SaaS (software as a service) that provides a single platform for data warehousing, data lakes, data engineering, data science, data application development, and secure sharing and consumption of real-time / shared data. Snowflake has out-of-the-box features like separation of storage and compute, on-the-fly scalable compute, data sharing, data cloning, and third-party tools support to handle the demanding needs of growing enterprises.
Prerequisites
You need Snowflake instance up-and-running. If you don’t have one, you can create it from here.
From Snowflake to Neo4j
// Step (1)
// Load a table into a Spark DataFrame
val snowflakeDF: DataFrame = spark.read
.format("snowflake")
.option("sfURL", "<account_identifier>.snowflakecomputing.com")
.option("sfUser", "<user_name>")
.option("sfPassword", "<password>")
.option("sfDatabase", "<database>")
.option("sfSchema", "<schema>")
.option("dbtable", "CUSTOMER")
.load()
// Step (2)
// Save the `snowflakeDF` as nodes with labels `Person` and `Customer` into Neo4j
snowflakeDF.write
.format("org.neo4j.spark.DataSource")
.mode(SaveMode.ErrorIfExists)
.option("url", "neo4j://<host>:<port>")
.option("labels", ":Person:Customer")
.save()
# Step (1)
# Load a table into a Spark DataFrame
snowflakeDF = (spark.read
.format("snowflake")
.option("sfURL", "<account_identifier>.snowflakecomputing.com")
.option("sfUser", "<user_name>")
.option("sfPassword", "<password>")
.option("sfDatabase", "<database>")
.option("sfSchema", "<schema>")
.option("dbtable", "CUSTOMER")
.load())
# Step (2)
# Save the `snowflakeDF` as nodes with labels `Person` and `Customer` into Neo4j
(snowflakeDF.write
.format("org.neo4j.spark.DataSource")
.mode(SaveMode.ErrorIfExists)
.option("url", "neo4j://<host>:<port>")
.option("labels", ":Person:Customer")
.save())
From Neo4j to Snowflake
// Step (1)
// Load `:Person:Customer` nodes as DataFrame
val neo4jDF: DataFrame = spark.read.format("org.neo4j.spark.DataSource")
.option("url", "neo4j://<host>:<port>")
.option("labels", ":Person:Customer")
.load()
// Step (2)
// Save the `neo4jDF` as table CUSTOMER into Snowflake
neo4jDF.write
.format("snowflake")
.mode("overwrite")
.option("sfURL", "<account_identifier>.snowflakecomputing.com")
.option("sfUser", "<user_name>")
.option("sfPassword", "<password>")
.option("sfDatabase", "<database>")
.option("sfSchema", "<schema>")
.option("dbtable", "CUSTOMER")
.save()
# Step (1)
# Load `:Person:Customer` nodes as DataFrame
neo4jDF = (spark.read.format("org.neo4j.spark.DataSource")
.option("url", "neo4j://<host>:<port>")
.option("labels", ":Person:Customer")
.load())
# Step (2)
# Save the `neo4jDF` as table CUSTOMER into Snowflake
(neo4jDF.write
.format("snowflake")
.mode("overwrite")
.option("sfURL", "<account_identifier>.snowflakecomputing.com")
.option("sfUser", "<user_name>")
.option("sfPassword", "<password>")
.option("sfDatabase", "<database>")
.option("sfSchema", "<schema>")
.option("dbtable", "CUSTOMER")
.save())