Source code for neo4j_graphrag.retrievers.hybrid

#  Copyright (c) "Neo4j"
#  Neo4j Sweden AB [https://neo4j.com]
#  #
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#  #
#      https://www.apache.org/licenses/LICENSE-2.0
#  #
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
from __future__ import annotations

import copy
import logging
from typing import Any, Callable, Optional

import neo4j
from pydantic import ValidationError

from neo4j_graphrag.embeddings.base import Embedder
from neo4j_graphrag.exceptions import (
    EmbeddingRequiredError,
    RetrieverInitializationError,
    SearchValidationError,
)
from neo4j_graphrag.neo4j_queries import get_search_query
from neo4j_graphrag.retrievers.base import Retriever
from neo4j_graphrag.types import (
    EmbedderModel,
    HybridCypherRetrieverModel,
    HybridCypherSearchModel,
    HybridRetrieverModel,
    HybridSearchModel,
    Neo4jDriverModel,
    RawSearchResult,
    RetrieverResultItem,
    SearchType,
)

logger = logging.getLogger(__name__)


[docs] class HybridRetriever(Retriever): """ Provides retrieval method using combination of vector search over embeddings and fulltext search. If an embedder is provided, it needs to have the required Embedder type. Example: .. code-block:: python import neo4j from neo4j_graphrag.retrievers import HybridRetriever driver = neo4j.GraphDatabase.driver(URI, auth=AUTH) retriever = HybridRetriever( driver, "vector-index-name", "fulltext-index-name", custom_embedder ) retriever.search(query_text="Find me a book about Fremen", top_k=5) Args: driver (neo4j.Driver): The Neo4j Python driver. vector_index_name (str): Vector index name. fulltext_index_name (str): Fulltext index name. embedder (Optional[Embedder]): Embedder object to embed query text. return_properties (Optional[list[str]]): List of node properties to return. neo4j_database (Optional[str]): The name of the Neo4j database. If not provided, this defaults to "neo4j" in the database (`see reference to documentation <https://neo4j.com/docs/operations-manual/current/database-administration/#manage-databases-default>`_). result_formatter (Optional[Callable[[neo4j.Record], RetrieverResultItem]]): Provided custom function to transform a neo4j.Record to a RetrieverResultItem. Two variables are provided in the neo4j.Record: - node: Represents the node retrieved from the vector index search. - score: Denotes the similarity score. """ def __init__( self, driver: neo4j.Driver, vector_index_name: str, fulltext_index_name: str, embedder: Optional[Embedder] = None, return_properties: Optional[list[str]] = None, result_formatter: Optional[ Callable[[neo4j.Record], RetrieverResultItem] ] = None, neo4j_database: Optional[str] = None, ) -> None: try: driver_model = Neo4jDriverModel(driver=driver) embedder_model = EmbedderModel(embedder=embedder) if embedder else None validated_data = HybridRetrieverModel( driver_model=driver_model, vector_index_name=vector_index_name, fulltext_index_name=fulltext_index_name, embedder_model=embedder_model, return_properties=return_properties, result_formatter=result_formatter, neo4j_database=neo4j_database, ) except ValidationError as e: raise RetrieverInitializationError(e.errors()) from e super().__init__( validated_data.driver_model.driver, validated_data.neo4j_database ) self.vector_index_name = validated_data.vector_index_name self.fulltext_index_name = validated_data.fulltext_index_name self.return_properties = validated_data.return_properties self.embedder = ( validated_data.embedder_model.embedder if validated_data.embedder_model else None ) self.result_formatter = validated_data.result_formatter self._embedding_node_property = None self._embedding_dimension = None self._fetch_index_infos(self.vector_index_name) def default_record_formatter(self, record: neo4j.Record) -> RetrieverResultItem: """ Best effort to guess the node-to-text method. Inherited classes can override this method to implement custom text formatting. """ metadata = { "score": record.get("score"), } node = record.get("node") return RetrieverResultItem( content=str(node), metadata=metadata, ) def get_search_results( self, query_text: str, query_vector: Optional[list[float]] = None, top_k: int = 5, ) -> RawSearchResult: """Get the top_k nearest neighbor embeddings for either provided query_vector or query_text. Both query_vector and query_text can be provided. If query_vector is provided, then it will be preferred over the embedded query_text for the vector search. See the following documentation for more details: - `Query a vector index <https://neo4j.com/docs/cypher-manual/current/indexes-for-vector-search/#indexes-vector-query>`_ - `db.index.vector.queryNodes() <https://neo4j.com/docs/operations-manual/5/reference/procedures/#procedure_db_index_vector_queryNodes>`_ - `db.index.fulltext.queryNodes() <https://neo4j.com/docs/operations-manual/5/reference/procedures/#procedure_db_index_fulltext_querynodes>`_ To query by text, an embedder must be provided when the class is instantiated. Args: query_text (str): The text to get the closest neighbors of. query_vector (Optional[list[float]], optional): The vector embeddings to get the closest neighbors of. Defaults to None. top_k (int, optional): The number of neighbors to return. Defaults to 5. Raises: SearchValidationError: If validation of the input arguments fail. EmbeddingRequiredError: If no embedder is provided. Returns: RawSearchResult: The results of the search query as a list of neo4j.Record and an optional metadata dict """ try: validated_data = HybridSearchModel( query_vector=query_vector, query_text=query_text, top_k=top_k, ) except ValidationError as e: raise SearchValidationError(e.errors()) from e parameters = validated_data.model_dump(exclude_none=True) parameters["vector_index_name"] = self.vector_index_name parameters["fulltext_index_name"] = self.fulltext_index_name if query_text and not query_vector: if not self.embedder: raise EmbeddingRequiredError( "Embedding method required for text query." ) query_vector = self.embedder.embed_query(query_text) parameters["query_vector"] = query_vector search_query, _ = get_search_query( SearchType.HYBRID, self.return_properties, embedding_node_property=self._embedding_node_property, neo4j_version_is_5_23_or_above=self.neo4j_version_is_5_23_or_above, ) sanitized_parameters = copy.deepcopy(parameters) if "query_vector" in sanitized_parameters: sanitized_parameters["query_vector"] = "..." logger.debug("HybridRetriever Cypher parameters: %s", sanitized_parameters) logger.debug("HybridRetriever Cypher query: %s", search_query) records, _, _ = self.driver.execute_query( search_query, parameters, database_=self.neo4j_database ) return RawSearchResult( records=records, )
[docs] class HybridCypherRetriever(Retriever): """ Provides retrieval method using combination of vector search over embeddings and fulltext search, augmented by a Cypher query. This retriever builds on HybridRetriever. If an embedder is provided, it needs to have the required Embedder type. Note: `node` is a variable from the base query that can be used in `retrieval_query` as seen in the example below. Example: .. code-block:: python import neo4j from neo4j_graphrag.retrievers import HybridCypherRetriever driver = neo4j.GraphDatabase.driver(URI, auth=AUTH) retrieval_query = "MATCH (node)-[:AUTHORED_BY]->(author:Author)" "RETURN author.name" retriever = HybridCypherRetriever( driver, "vector-index-name", "fulltext-index-name", retrieval_query, custom_embedder ) retriever.search(query_text="Find me a book about Fremen", top_k=5) To query by text, an embedder must be provided when the class is instantiated. Args: driver (neo4j.Driver): The Neo4j Python driver. vector_index_name (str): Vector index name. fulltext_index_name (str): Fulltext index name. retrieval_query (str): Cypher query that gets appended. embedder (Optional[Embedder]): Embedder object to embed query text. result_formatter (Optional[Callable[[neo4j.Record], RetrieverResultItem]]): Provided custom function to transform a neo4j.Record to a RetrieverResultItem. neo4j_database (Optional[str]): The name of the Neo4j database. If not provided, this defaults to "neo4j" in the database (`see reference to documentation <https://neo4j.com/docs/operations-manual/current/database-administration/#manage-databases-default>`_). Raises: RetrieverInitializationError: If validation of the input arguments fail. """ def __init__( self, driver: neo4j.Driver, vector_index_name: str, fulltext_index_name: str, retrieval_query: str, embedder: Optional[Embedder] = None, result_formatter: Optional[ Callable[[neo4j.Record], RetrieverResultItem] ] = None, neo4j_database: Optional[str] = None, ) -> None: try: driver_model = Neo4jDriverModel(driver=driver) embedder_model = EmbedderModel(embedder=embedder) if embedder else None validated_data = HybridCypherRetrieverModel( driver_model=driver_model, vector_index_name=vector_index_name, fulltext_index_name=fulltext_index_name, retrieval_query=retrieval_query, embedder_model=embedder_model, result_formatter=result_formatter, neo4j_database=neo4j_database, ) except ValidationError as e: raise RetrieverInitializationError(e.errors()) from e super().__init__( validated_data.driver_model.driver, validated_data.neo4j_database ) self.vector_index_name = validated_data.vector_index_name self.fulltext_index_name = validated_data.fulltext_index_name self.retrieval_query = validated_data.retrieval_query self.embedder = ( validated_data.embedder_model.embedder if validated_data.embedder_model else None ) self.result_formatter = validated_data.result_formatter def get_search_results( self, query_text: str, query_vector: Optional[list[float]] = None, top_k: int = 5, query_params: Optional[dict[str, Any]] = None, ) -> RawSearchResult: """Get the top_k nearest neighbor embeddings for either provided query_vector or query_text. Both query_vector and query_text can be provided. If query_vector is provided, then it will be preferred over the embedded query_text for the vector search. See the following documentation for more details: - `Query a vector index <https://neo4j.com/docs/cypher-manual/current/indexes-for-vector-search/#indexes-vector-query>`_ - `db.index.vector.queryNodes() <https://neo4j.com/docs/operations-manual/5/reference/procedures/#procedure_db_index_vector_queryNodes>`_ - `db.index.fulltext.queryNodes() <https://neo4j.com/docs/operations-manual/5/reference/procedures/#procedure_db_index_fulltext_querynodes>`_ Args: query_text (str): The text to get the closest neighbors of. query_vector (Optional[list[float]]): The vector embeddings to get the closest neighbors of. Defaults to None. top_k (int): The number of neighbors to return. Defaults to 5. query_params (Optional[dict[str, Any]]): Parameters for the Cypher query. Defaults to None. Raises: SearchValidationError: If validation of the input arguments fail. EmbeddingRequiredError: If no embedder is provided. Returns: RawSearchResult: The results of the search query as a list of neo4j.Record and an optional metadata dict """ try: validated_data = HybridCypherSearchModel( query_vector=query_vector, query_text=query_text, top_k=top_k, query_params=query_params, ) except ValidationError as e: raise SearchValidationError(e.errors()) from e parameters = validated_data.model_dump(exclude_none=True) parameters["vector_index_name"] = self.vector_index_name parameters["fulltext_index_name"] = self.fulltext_index_name if query_text and not query_vector: if not self.embedder: raise EmbeddingRequiredError( "Embedding method required for text query." ) query_vector = self.embedder.embed_query(query_text) parameters["query_vector"] = query_vector if query_params: for key, value in query_params.items(): if key not in parameters: parameters[key] = value del parameters["query_params"] search_query, _ = get_search_query( SearchType.HYBRID, retrieval_query=self.retrieval_query, neo4j_version_is_5_23_or_above=self.neo4j_version_is_5_23_or_above, ) sanitized_parameters = copy.deepcopy(parameters) if "query_vector" in sanitized_parameters: sanitized_parameters["query_vector"] = "..." logger.debug("HybridRetriever Cypher parameters: %s", sanitized_parameters) logger.debug("HybridRetriever Cypher query: %s", search_query) records, _, _ = self.driver.execute_query( search_query, parameters, database_=self.neo4j_database ) return RawSearchResult( records=records, )