Source code for neo4j_graphrag.llm.ollama_llm

#  Copyright (c) "Neo4j"
#  Neo4j Sweden AB [https://neo4j.com]
#  #
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#  #
#      https://www.apache.org/licenses/LICENSE-2.0
#  #
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
from __future__ import annotations

from typing import TYPE_CHECKING, Any, Iterable, Optional, Sequence, cast

from pydantic import ValidationError

from neo4j_graphrag.exceptions import LLMGenerationError

from .base import LLMInterface
from .types import (
    BaseMessage,
    LLMMessage,
    LLMResponse,
    MessageList,
    SystemMessage,
    UserMessage,
)

if TYPE_CHECKING:
    from ollama import Message


[docs] class OllamaLLM(LLMInterface): def __init__( self, model_name: str, model_params: Optional[dict[str, Any]] = None, **kwargs: Any, ): try: import ollama except ImportError: raise ImportError( "Could not import ollama Python client. " "Please install it with `pip install ollama`." ) super().__init__(model_name, model_params, **kwargs) self.ollama = ollama self.client = ollama.Client( **kwargs, ) self.async_client = ollama.AsyncClient( **kwargs, )
[docs] def get_messages( self, input: str, message_history: Optional[list[LLMMessage]] = None, system_instruction: Optional[str] = None, ) -> Sequence[Message]: messages = [] if system_instruction: messages.append(SystemMessage(content=system_instruction).model_dump()) if message_history: try: MessageList(messages=cast(list[BaseMessage], message_history)) except ValidationError as e: raise LLMGenerationError(e.errors()) from e messages.extend(cast(Iterable[dict[str, Any]], message_history)) messages.append(UserMessage(content=input).model_dump()) return messages # type: ignore
[docs] def invoke( self, input: str, message_history: Optional[list[LLMMessage]] = None, system_instruction: Optional[str] = None, ) -> LLMResponse: """Sends text to the LLM and returns a response. Args: input (str): The text to send to the LLM. message_history (Optional[list]): A collection previous messages, with each message having a specific role assigned. system_instruction (Optional[str]): An option to override the llm system message for this invokation. Returns: LLMResponse: The response from the LLM. """ try: response = self.client.chat( model=self.model_name, messages=self.get_messages(input, message_history, system_instruction), options=self.model_params, ) content = response.message.content or "" return LLMResponse(content=content) except self.ollama.ResponseError as e: raise LLMGenerationError(e)
[docs] async def ainvoke( self, input: str, message_history: Optional[list[LLMMessage]] = None, system_instruction: Optional[str] = None, ) -> LLMResponse: """Asynchronously sends a text input to the OpenAI chat completion model and returns the response's content. Args: input (str): Text sent to the LLM. message_history (Optional[list]): A collection previous messages, with each message having a specific role assigned. system_instruction (Optional[str]): An option to override the llm system message for this invokation. Returns: LLMResponse: The response from OpenAI. Raises: LLMGenerationError: If anything goes wrong. """ try: response = await self.async_client.chat( model=self.model_name, messages=self.get_messages(input, message_history, system_instruction), options=self.model_params, ) content = response.message.content or "" return LLMResponse(content=content) except self.ollama.ResponseError as e: raise LLMGenerationError(e)