Source code for neo4j_graphrag.llm.mistralai_llm

#  Copyright (c) "Neo4j"
#  Neo4j Sweden AB [https://neo4j.com]
#  #
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#  #
#      https://www.apache.org/licenses/LICENSE-2.0
#  #
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
from __future__ import annotations

import os
from typing import Any, Iterable, Optional, cast

from pydantic import ValidationError

from neo4j_graphrag.exceptions import LLMGenerationError
from neo4j_graphrag.llm.base import LLMInterface
from neo4j_graphrag.llm.types import (
    BaseMessage,
    LLMMessage,
    LLMResponse,
    MessageList,
    SystemMessage,
    UserMessage,
)

try:
    from mistralai import Messages, Mistral
    from mistralai.models.sdkerror import SDKError
except ImportError:
    Mistral = None  # type: ignore
    SDKError = None  # type: ignore


[docs] class MistralAILLM(LLMInterface): def __init__( self, model_name: str, model_params: Optional[dict[str, Any]] = None, **kwargs: Any, ): """ Args: model_name (str): model_params (str): Parameters like temperature and such that will be passed to the chat completions endpoint kwargs: All other parameters will be passed to the Mistral client. """ if Mistral is None: raise ImportError( """Could not import Mistral Python client. Please install it with `pip install "neo4j-graphrag[mistralai]"`.""" ) super().__init__(model_name, model_params) api_key = kwargs.pop("api_key", None) if api_key is None: api_key = os.getenv("MISTRAL_API_KEY", "") self.client = Mistral(api_key=api_key, **kwargs)
[docs] def get_messages( self, input: str, message_history: Optional[list[LLMMessage]] = None, system_instruction: Optional[str] = None, ) -> list[Messages]: messages = [] if system_instruction: messages.append(SystemMessage(content=system_instruction).model_dump()) if message_history: try: MessageList(messages=cast(list[BaseMessage], message_history)) except ValidationError as e: raise LLMGenerationError(e.errors()) from e messages.extend(cast(Iterable[dict[str, Any]], message_history)) messages.append(UserMessage(content=input).model_dump()) return cast(list[Messages], messages)
[docs] def invoke( self, input: str, message_history: Optional[list[LLMMessage]] = None, system_instruction: Optional[str] = None, ) -> LLMResponse: """Sends a text input to the Mistral chat completion model and returns the response's content. Args: input (str): Text sent to the LLM. message_history (Optional[list]): A collection previous messages, with each message having a specific role assigned. system_instruction (Optional[str]): An option to override the llm system message for this invokation. Returns: LLMResponse: The response from MistralAI. Raises: LLMGenerationError: If anything goes wrong. """ try: messages = self.get_messages(input, message_history, system_instruction) response = self.client.chat.complete( model=self.model_name, messages=messages, **self.model_params, ) content: str = "" if response and response.choices: possible_content = response.choices[0].message.content if isinstance(possible_content, str): content = possible_content return LLMResponse(content=content) except SDKError as e: raise LLMGenerationError(e)
[docs] async def ainvoke( self, input: str, message_history: Optional[list[LLMMessage]] = None, system_instruction: Optional[str] = None, ) -> LLMResponse: """Asynchronously sends a text input to the MistralAI chat completion model and returns the response's content. Args: input (str): Text sent to the LLM. message_history (Optional[list]): A collection previous messages, with each message having a specific role assigned. system_instruction (Optional[str]): An option to override the llm system message for this invokation. Returns: LLMResponse: The response from MistralAI. Raises: LLMGenerationError: If anything goes wrong. """ try: messages = self.get_messages(input, message_history, system_instruction) response = await self.client.chat.complete_async( model=self.model_name, messages=messages, **self.model_params, ) content: str = "" if response and response.choices: possible_content = response.choices[0].message.content if isinstance(possible_content, str): content = possible_content return LLMResponse(content=content) except SDKError as e: raise LLMGenerationError(e)