Source code for neo4j_graphrag.llm.cohere_llm

#  Copyright (c) "Neo4j"
#  Neo4j Sweden AB [https://neo4j.com]
#  #
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#  #
#      https://www.apache.org/licenses/LICENSE-2.0
#  #
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
from __future__ import annotations

from typing import TYPE_CHECKING, Any, Iterable, Optional, cast

from pydantic import ValidationError

from neo4j_graphrag.exceptions import LLMGenerationError
from neo4j_graphrag.llm.base import LLMInterface
from neo4j_graphrag.llm.types import (
    BaseMessage,
    LLMMessage,
    LLMResponse,
    MessageList,
    SystemMessage,
    UserMessage,
)

if TYPE_CHECKING:
    from cohere import ChatMessages


[docs] class CohereLLM(LLMInterface): """Interface for large language models on the Cohere platform Args: model_name (str, optional): Name of the LLM to use. Defaults to "gemini-1.5-flash-001". model_params (Optional[dict], optional): Additional parameters passed to the model when text is sent to it. Defaults to None. system_instruction: Optional[str], optional): Additional instructions for setting the behavior and context for the model in a conversation. Defaults to None. **kwargs (Any): Arguments passed to the model when for the class is initialised. Defaults to None. Raises: LLMGenerationError: If there's an error generating the response from the model. Example: .. code-block:: python from neo4j_graphrag.llm import CohereLLM llm = CohereLLM(api_key="...") llm.invoke("Say something") """ def __init__( self, model_name: str = "", model_params: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> None: try: import cohere except ImportError: raise ImportError( """Could not import cohere python client. Please install it with `pip install "neo4j-graphrag[cohere]"`.""" ) super().__init__(model_name, model_params) self.cohere = cohere self.cohere_api_error = cohere.core.api_error.ApiError self.client = cohere.ClientV2(**kwargs) self.async_client = cohere.AsyncClientV2(**kwargs)
[docs] def get_messages( self, input: str, message_history: Optional[list[LLMMessage]] = None, system_instruction: Optional[str] = None, ) -> ChatMessages: messages = [] if system_instruction: messages.append(SystemMessage(content=system_instruction).model_dump()) if message_history: try: MessageList(messages=cast(list[BaseMessage], message_history)) except ValidationError as e: raise LLMGenerationError(e.errors()) from e messages.extend(cast(Iterable[dict[str, Any]], message_history)) messages.append(UserMessage(content=input).model_dump()) return messages # type: ignore
[docs] def invoke( self, input: str, message_history: Optional[list[LLMMessage]] = None, system_instruction: Optional[str] = None, ) -> LLMResponse: """Sends text to the LLM and returns a response. Args: input (str): The text to send to the LLM. message_history (Optional[list]): A collection previous messages, with each message having a specific role assigned. system_instruction (Optional[str]): An option to override the llm system message for this invokation. Returns: LLMResponse: The response from the LLM. """ try: messages = self.get_messages(input, message_history, system_instruction) res = self.client.chat( messages=messages, model=self.model_name, ) except self.cohere_api_error as e: raise LLMGenerationError(e) return LLMResponse( content=res.message.content[0].text, )
[docs] async def ainvoke( self, input: str, message_history: Optional[list[LLMMessage]] = None, system_instruction: Optional[str] = None, ) -> LLMResponse: """Asynchronously sends text to the LLM and returns a response. Args: input (str): The text to send to the LLM. message_history (Optional[list]): A collection previous messages, with each message having a specific role assigned. system_instruction (Optional[str]): An option to override the llm system message for this invokation. Returns: LLMResponse: The response from the LLM. """ try: messages = self.get_messages(input, message_history, system_instruction) res = self.async_client.chat( messages=messages, model=self.model_name, ) except self.cohere_api_error as e: raise LLMGenerationError(e) return LLMResponse( content=res.message.content[0].text, )