Source code for neo4j_graphrag.llm.anthropic_llm

#  Neo4j Sweden AB [https://neo4j.com]
#  #
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#  #
#      https://www.apache.org/licenses/LICENSE-2.0
#  #
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
from __future__ import annotations

from typing import TYPE_CHECKING, Any, Iterable, Optional, cast

from pydantic import ValidationError

from neo4j_graphrag.exceptions import LLMGenerationError
from neo4j_graphrag.llm.base import LLMInterface
from neo4j_graphrag.llm.types import (
    BaseMessage,
    LLMMessage,
    LLMResponse,
    MessageList,
    UserMessage,
)

if TYPE_CHECKING:
    from anthropic.types.message_param import MessageParam


[docs] class AnthropicLLM(LLMInterface): """Interface for large language models on Anthropic Args: model_name (str, optional): Name of the LLM to use. Defaults to "gemini-1.5-flash-001". model_params (Optional[dict], optional): Additional parameters passed to the model when text is sent to it. Defaults to None. system_instruction: Optional[str], optional): Additional instructions for setting the behavior and context for the model in a conversation. Defaults to None. **kwargs (Any): Arguments passed to the model when for the class is initialised. Defaults to None. Raises: LLMGenerationError: If there's an error generating the response from the model. Example: .. code-block:: python from neo4j_graphrag.llm import AnthropicLLM llm = AnthropicLLM( model_name="claude-3-opus-20240229", model_params={"max_tokens": 1000}, api_key="sk...", # can also be read from env vars ) llm.invoke("Who is the mother of Paul Atreides?") """ def __init__( self, model_name: str, model_params: Optional[dict[str, Any]] = None, **kwargs: Any, ): try: import anthropic except ImportError: raise ImportError( """Could not import Anthropic Python client. Please install it with `pip install "neo4j-graphrag[anthropic]"`.""" ) super().__init__(model_name, model_params) self.anthropic = anthropic self.client = anthropic.Anthropic(**kwargs) self.async_client = anthropic.AsyncAnthropic(**kwargs)
[docs] def get_messages( self, input: str, message_history: Optional[list[LLMMessage]] = None ) -> Iterable[MessageParam]: messages: list[dict[str, str]] = [] if message_history: try: MessageList(messages=cast(list[BaseMessage], message_history)) except ValidationError as e: raise LLMGenerationError(e.errors()) from e messages.extend(cast(Iterable[dict[str, Any]], message_history)) messages.append(UserMessage(content=input).model_dump()) return messages # type: ignore
[docs] def invoke( self, input: str, message_history: Optional[list[LLMMessage]] = None, system_instruction: Optional[str] = None, ) -> LLMResponse: """Sends text to the LLM and returns a response. Args: input (str): The text to send to the LLM. message_history (Optional[list]): A collection previous messages, with each message having a specific role assigned. system_instruction (Optional[str]): An option to override the llm system message for this invokation. Returns: LLMResponse: The response from the LLM. """ try: messages = self.get_messages(input, message_history) response = self.client.messages.create( model=self.model_name, system=system_instruction or self.anthropic.NOT_GIVEN, messages=messages, **self.model_params, ) return LLMResponse(content=response.content) except self.anthropic.APIError as e: raise LLMGenerationError(e)
[docs] async def ainvoke( self, input: str, message_history: Optional[list[LLMMessage]] = None, system_instruction: Optional[str] = None, ) -> LLMResponse: """Asynchronously sends text to the LLM and returns a response. Args: input (str): The text to send to the LLM. message_history (Optional[list]): A collection previous messages, with each message having a specific role assigned. system_instruction (Optional[str]): An option to override the llm system message for this invokation. Returns: LLMResponse: The response from the LLM. """ try: messages = self.get_messages(input, message_history) response = await self.async_client.messages.create( model=self.model_name, system=system_instruction or self.anthropic.NOT_GIVEN, messages=messages, **self.model_params, ) return LLMResponse(content=response.content) except self.anthropic.APIError as e: raise LLMGenerationError(e)