Source code for neo4j_graphrag.experimental.components.schema

#  Copyright (c) "Neo4j"
#  Neo4j Sweden AB [https://neo4j.com]
#  #
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#  #
#      https://www.apache.org/licenses/LICENSE-2.0
#  #
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
from __future__ import annotations

from typing import Any, Dict, List, Literal, Optional, Tuple

from pydantic import BaseModel, ValidationError, model_validator, validate_call

from neo4j_graphrag.exceptions import SchemaValidationError
from neo4j_graphrag.experimental.pipeline.component import Component, DataModel


[docs] class SchemaProperty(BaseModel): """ Represents a property on a node or relationship in the graph. """ name: str # See https://neo4j.com/docs/cypher-manual/current/values-and-types/property-structural-constructed/#property-types type: Literal[ "BOOLEAN", "DATE", "DURATION", "FLOAT", "INTEGER", "LIST", "LOCAL_DATETIME", "LOCAL_TIME", "POINT", "STRING", "ZONED_DATETIME", "ZONED_TIME", ] description: str = ""
[docs] class SchemaEntity(BaseModel): """ Represents a possible node in the graph. """ label: str description: str = "" properties: List[SchemaProperty] = []
[docs] class SchemaRelation(BaseModel): """ Represents a possible relationship between nodes in the graph. """ label: str description: str = "" properties: List[SchemaProperty] = []
[docs] class SchemaConfig(DataModel): """ Represents possible relationships between entities and relations in the graph. """ entities: Dict[str, Dict[str, Any]] relations: Optional[Dict[str, Dict[str, Any]]] potential_schema: Optional[List[Tuple[str, str, str]]] @model_validator(mode="before") def check_schema(cls, data: Dict[str, Any]) -> Dict[str, Any]: entities = data.get("entities", {}).keys() relations = data.get("relations", {}).keys() potential_schema = data.get("potential_schema", []) if potential_schema: if not relations: raise SchemaValidationError( "Relations must also be provided when using a potential schema." ) for entity1, relation, entity2 in potential_schema: if entity1 not in entities: raise SchemaValidationError( f"Entity '{entity1}' is not defined in the provided entities." ) if relation not in relations: raise SchemaValidationError( f"Relation '{relation}' is not defined in the provided relations." ) if entity2 not in entities: raise SchemaValidationError( f"Entity '{entity2}' is not defined in the provided entities." ) return data
[docs] class SchemaBuilder(Component): """ A builder class for constructing SchemaConfig objects from given entities, relations, and their interrelationships defined in a potential schema. Example: .. code-block:: python from neo4j_graphrag.experimental.components.schema import ( SchemaBuilder, SchemaEntity, SchemaProperty, SchemaRelation, ) from neo4j_graphrag.experimental.pipeline import Pipeline entities = [ SchemaEntity( label="PERSON", description="An individual human being.", properties=[ SchemaProperty( name="name", type="STRING", description="The name of the person" ) ], ), SchemaEntity( label="ORGANIZATION", description="A structured group of people with a common purpose.", properties=[ SchemaProperty( name="name", type="STRING", description="The name of the organization" ) ], ), ] relations = [ SchemaRelation( label="EMPLOYED_BY", description="Indicates employment relationship." ), ] potential_schema = [ ("PERSON", "EMPLOYED_BY", "ORGANIZATION"), ] pipe = Pipeline() schema_builder = SchemaBuilder() pipe.add_component(schema_builder, "schema_builder") pipe_inputs = { "schema": { "entities": entities, "relations": relations, "potential_schema": potential_schema, }, ... } pipe.run(pipe_inputs) """ @staticmethod def create_schema_model( entities: List[SchemaEntity], relations: Optional[List[SchemaRelation]] = None, potential_schema: Optional[List[Tuple[str, str, str]]] = None, ) -> SchemaConfig: """ Creates a SchemaConfig object from Lists of Entity and Relation objects and a Dictionary defining potential relationships. Args: entities (List[SchemaEntity]): List of Entity objects. relations (List[SchemaRelation]): List of Relation objects. potential_schema (Dict[str, List[str]]): Dictionary mapping entity names to Lists of relation names. Returns: SchemaConfig: A configured schema object. """ entity_dict = {entity.label: entity.model_dump() for entity in entities} relation_dict = ( {relation.label: relation.model_dump() for relation in relations} if relations else {} ) try: return SchemaConfig( entities=entity_dict, relations=relation_dict, potential_schema=potential_schema, ) except (ValidationError, SchemaValidationError) as e: raise SchemaValidationError(e)
[docs] @validate_call async def run( self, entities: List[SchemaEntity], relations: Optional[List[SchemaRelation]] = None, potential_schema: Optional[List[Tuple[str, str, str]]] = None, ) -> SchemaConfig: """ Asynchronously constructs and returns a SchemaConfig object. Args: entities (List[SchemaEntity]): List of Entity objects. relations (List[SchemaRelation]): List of Relation objects. potential_schema (Dict[str, List[str]]): Dictionary mapping entity names to Lists of relation names. Returns: SchemaConfig: A configured schema object, constructed asynchronously. """ return self.create_schema_model(entities, relations, potential_schema)