Source code for neo4j_graphrag.embeddings.sentence_transformers

#  Copyright (c) "Neo4j"
#  Neo4j Sweden AB [https://neo4j.com]
#  #
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#  #
#      https://www.apache.org/licenses/LICENSE-2.0
#  #
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from typing import Any

from neo4j_graphrag.embeddings.base import Embedder


[docs] class SentenceTransformerEmbeddings(Embedder): def __init__( self, model: str = "all-MiniLM-L6-v2", *args: Any, **kwargs: Any ) -> None: try: import numpy as np import sentence_transformers import torch except ImportError: raise ImportError( "Could not import sentence_transformers python package. " "Please install it with `pip install sentence-transformers`." ) self.torch = torch self.np = np self.model = sentence_transformers.SentenceTransformer(model, *args, **kwargs)
[docs] def embed_query(self, text: str) -> Any: result = self.model.encode([text]) if isinstance(result, self.torch.Tensor) or isinstance(result, self.np.ndarray): return result.flatten().tolist() elif isinstance(result, list) and all( isinstance(x, self.torch.Tensor) for x in result ): return [item for tensor in result for item in tensor.flatten().tolist()] else: raise ValueError("Unexpected return type from model encoding")